Computing Stable Coalitions: Approximation Algorithms for Reward Sharing
نویسندگان
چکیده
Consider a setting where selfish agents are to be assigned to coalitions or projects from a set P. Each project k ∈ P is characterized by a valuation function; vk(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: “how should the agents divide the value that they collectively create?”. One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.
منابع مشابه
Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملImproving the palbimm scheduling algorithm for fault tolerance in cloud computing
Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...
متن کاملAn Almost Ideal Sharing Scheme for Coalition Games with Externalities
We propose a class of sharing schemes for the distribution of the gains from cooperation for coalition games with externalities. In the context of the partition function, it is shown that any member of this class of sharing schemes leads to the same set of stable coalitions in the sense of d’Aspremont et al. (1983). These schemes are “almost ideal” in that they stabilize these coalitions which ...
متن کاملCoordination Mechanisms, Cost-Sharing, and Approximation Algorithms for Scheduling
We reveal a connection between coordination mechanisms for unrelated machine scheduling and cost-sharing protocols. Using this connection, we interpret three coordination mechanisms from the recent literature as Shapley-value-based cost-sharing protocols, thus providing a unifying justification regarding why these mechanisms induce potential games. More importantly, this connection provides a t...
متن کاملForming coalitions and facilitating relationships for completing tasks in social networks
We consider the problem of computing effective coalition structures in situations where the coalitions that can be formed and the value of these coalitions is determined by a social network, indicating the strength of relationships between agents. We assume that a central organizer desires to build coalition structures to carry out a given set of tasks, and that it is possible for this central ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015